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LE’lTER TO THE EDITOR 

Spin-glass field theory in the condensed phase continued to 
below d = 6  

C De Dominicis? and I KondorS 
t Service de Physique Thiorique de Saclay#, F-91191 Gif-sur-Yvette, France 
$ Institute for Theoretical Physics, Eotvos University, Budapest, Hungary 

Received 5 June 1989 

Abstract. Field theory has been held back from being able to describe the spin-glass 
condensed phase in physical dimensions by the strong infrared divergences of its (bare) 
propagators with small overlaps, e.g. the zero overlap replicon propagator Gr(  p )  - P - ~ .  
Here we examine the effect of fluctuations at the one-loop level on the equation of state 
for the Parisi order parameter q(x). We find that above d =6, the one-loop term does not 
change the analytical behaviour of q(x) - x. Below d = 6, the loop contribution becomes 
dominant and radically changes the classical behaviour into q(x) - xp, p = 3/( d -3) - 
1 + ~ / 3 .  Besides, since the infrared divergences are driven by the small-x behaviour, we 
also get G P ( ~ ) - P - ~ + * * ” .  This remark is also valid away from T, since the weakening 
of infrared singularities by fluctuations occurs solely via the (stronger) vanishing of q(x) 
near zero overlaps. Consistently taking account of fluctuations should thus allow a fully 
detailed field theory description of the condensed phase below d = 6. 

The possibility of setting up a meaningful field theory of the condensed phase of spin 
glasses in physical dimensions has tantalised physicists for more than ten years. This 
problem could be readily dismissed so long as a spin glass could be assumed to exist 
only in high dimensions, for Parisi [l] had taught us how to build a mean-field solution 
thaf, with all its unusual features (breaking of ergodicity or of replica symmetry), was 
shown to be stable [2]. As for experiments, they could always be considered as 
belonging to the realm of non-equilibrium dynamics. The situation became dramatic 
when most doubts were lifted in 1985 by the Ogielski [3] Monte Carlo calculation 
[4,5]: the Ising spin glass did undergo a phase transition in three dimensions. 

A nearest-neighbour king spin with Gaussian random bonds does not allow any 
other starting point for field theory than the Parisi mean-field one, around which a 
loop expansion is to be organised. And changing from a Gaussian to a discrete (say 
* J )  distribution does not leave enough room? to allow for a replica symmetric starting 
point. So the conclusion is inescapable: one has to work with Parisi’s ansatz and 
fluctuations around it. This conclusion has recently been reinforced by the findings 
of two groups [6,7] that suggest the existence of ergodicity breaking in d = 3, via 
numerical simulations. 

5 Laboratoire de I’Institut de Recherche Fondamentale du Commissariat P I’Energie Atomique. 
t In the best of the cases (and excluding singular distributions) the domain of dimensionality where a replica 
symmetric solution (in the tree approximation) is stable, remains confined to d e # !  This is for a kJ 
distribution, truncated to its first two cumulants [8]. 
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With that starting point established, one has then to face all the contradictions that 

Consider the 'bare' propagators first, and the simplest of all 
appear as direct consequences of the standard field theory. 

Gap,"'( p) (Sp"'( p ) S p u P  ( - p ) ) o .  ( 1 )  

Here the spin-glass field is pup (of wavevector p ) ,  a and p are a pair of replicas (with 
overlap (Y n p = x), and Gppp is the shift away from its mean-field average value 
( ~ p " ~ ) ~ , =  q(x). In ( 1 )  the average is computed with the Lagrangian reduced to its 
quadratic part in Sp"'. In our notation this is GT;Y(p). It has been shown [9] to be 
related to the two-states ( l ,  l ' )  correlation function 

c / , ' ( p )  = N-'  exp[ip ' ( r l  - ~ ) l ( c T l a J ) / ( c T l a J ) / ' -  N 6 p , o q l / '  (2) 
'J 

via 

G;:;(P) = C d P )  (3)  

q(x) = % I ,  (4) 

together with 

which identifies the Parisi order parameter and the (bond-averaged) overlap function 
[lo]. This propagator G;;;(p), and more complicated ones that involve two or three 
replica overlaps, have an infrared behaviour [ 1 1 1  in l/p2 when the overlaps are maximal, 
i.e. when those propagators pertain to a single (pure) state [12]. For example, one 
finds [9,11] 

for p'<< x: (and also for p2 >> xf) ,  with q(xl) = qrr the maximal value of the Parisi order 
parameter (and x1 the breakpoint value beyond which q(x) remains constant). Such 
an infrared behaviour would leave Parisi order intact in d = 3. Unfortunately, for small 
overlaps, the infrared singularity grows stronger, and for x = 0 one gets [ 1 1 ,  131 

a fluctuation bound to destroy Parisi order (in d S 4 ) .  This is only one example out 
of many in a complicated set of propagators [ l l ,  141. 

Another feature that has emerged recently [9], as a consequence of a Schwarz 
inequality over state correlations, says, in substance, that 

c/l(r) > G , * ( r ) .  (7) 
To view it in its most dramatic way let us take qrr. = 0. We then obtain 

constant constant 
q2(x1) +T> yd-4 

i.e. for a distance r - l / x ,  >> 1,  we get, with q(x) = x/2, 

x:/4+ constant xf -' > constant xf-4 

an inequality violated for d < 6  as x,<< 1.  
(9) 
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Obviously this is telling us that below d = 6, fluctuations are taking over. And 
indeed, this is to be expected if we assume that one is working with a system that is 
critical at all T < T, [4]. So it becomes essential, when solving the equation of state 
for the spin glass, to take into account loops below a critical dimension above which 
the Parisi solution is exact in substance. 

Let us thus start from the Lagrangian kept to its wp3+ up4 terms [15,16] in the 
so-called Parisi [ 11 approximation and let us work out the equation of state up to one 
loop. We find 

W 
- - L , ( x ) + u q ( x ) L " ( x ) + .  . . 

2 

with? 

L , ( x )  = xG:f+  dt  G:l + 2  dt  G:', L , ( x )  = G:: ( 1 1 )  Iox I: 
and, for shorthand, G = 2, G( p ) .  Let us now examine the mean-field and the fluctu- 
ation regimes as dimensionality varies. 

(i) Mean-jeld regime (classical). Let us first forget the loop terms. How is the 
mean-field answer obtained from the equation of state (lo)? The way it is derived is 
by repeated x derivatives (and divisions by q ( x )  # 0) that in the end leaves the equation 

o =  - w x + 2 u q ( x ) .  (12) 
The w terms in the equation of state are polynomials of third degree in x and in (12) 
it is its highest-degree term (typically the wxq2(x)  of (10)) that is matched with the U 
term. Terms oflesser degree (but dominant as x << x l )  are taken care of by the constants 
of integrations that take back from (12) to (10). Likewise if we now evaluate the loops, 
we obtain for the u-loop term, keeping to its most dangerous contribution that comes 
from the 'replicon' [ IS ,  161 sector$, 

d > 6  

where the explicit form [ l l ,  14, 181 of (GE)Rep has been used. Here A plays the role 
of an ultraviolet cutoff. Hence classically, as q ( x )  - x, the u-loop term gives the same 
analytic behaviour as the uq' (x)  term (the 'replicon' component of the w-loop also 
has the same behaviour). This is expected, for loops in the classical regime only change 
values of the parameters, not the analytical behaviour. As above, terms of lesser degree 
from the u-loop are left aside to satisfy integration boundary conditions. 

(ii) Fluctuation-dominated regime (non-classical). The above regime survives as 
long as d 2 6. Below d = 6, letting E = 6 - d, one finds for the same u-loop 

uq(x)L?P(x)  - uq(x) (q(;;:-*) - . 

t For Ge8;* one writes [ 141 G.;,32 with a n /3 = x, y n 6 = y, 1, = max(a n y ;  a n S), i2 = max(/3 n y ;  /3 n S), 
ultrametricity [2,17] leaving only three distinct indices. 
$ In zero (infinitesimal) magnetic field. In non-zero field the replicon propagator becomes well behaved 
( l/p2 in the classical regime) and the most dangerous one is the 'longitudinal-anomalous' propagator 
[ l l ,  141 which is far more complicated to handle analytically. 
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Here we see clearly that now the u-loop dominates at small x over the u q 3 ( x )  term 
(for x - 0 if q ( x )  - x then q(x) LFP(x)  - q ( ~ ) ~ - ' ) .  As above, we leave aside terms of 
lesser degree from the u-loop, and match (14) with typically wxq2(x) .  We obtain (the 
w-loop offers qualitatively the same behaviour) 

(15) 

which exhibits non-classical behaviour when d < 6 .  Note that the slope of q ( x )  vanishes 
at x = 0, a result that we learn has just been obtained, via a l / d  expansion, at d = 6 ,  
by Georges, MCzard and Yedidia [19]. With (15) one finds that the actual u-loop 
behaviour is q(x)L:ep(x) - q ( ~ ) ~ - " ~ .  

Let us now return to the replicon component of G Z ; ( p ) .  Its infrared divergence 
is governed by the small-x behaviour of q(x).  When q ( x )  - xp as in (15),  one derives 
then, for p << x ,  , 

1 1 
Gyy( p ) - - p 2 + 2 / p  - - p 4 - 2 ~ / 3  - 

Hence the infrared divergence is weakened. Turning to Schwarz inequality we see that 
the right-hand side of (8) decreases now more rapidly (as r 2 / p + 2 - d  ). The left-hand 
side behaviour is determined by solving the equation of state around the breakpoint 
x , .  In that region all propagators are in l / p 2  and the one-loop terms are unlikely to 
drastically modify the classical behaviour q ( x , )  - x, . Assuming that, and further that 
x ,  << 1, one can then check that (16) improves the inequality situation (9) and that the 
self-consistent solution evoked below satisfies it. 

The above results thus open the way to build propagators dressed byjluctuations that 
no longer destroy Parisi order in physical dimensions. 

A few remarks are finally in order. 
(i)  The above results bear no relationship to any proximity of T,. They have to 

do with the fact that here, contrary to standard critical phenomena where the order 
parameter vanishes at T, only, there is always a region of very small order parameter, 
which drives the infrared singularities. In that sense the system is critical at all 
temperatures (below T J .  

(ii) The above calculation is not self-consistent since the replicon u-loop has been 
evaluated with the mean-field values of the replicon masses [ 2 ,  131 

A~ep(ki, kZ, X I =  M ( k i ) + M ( k , ) - 2 M ( x )  M(x)  = u q 2 ( x ) .  (17) 

One may try to be more sophisticated, and self-consistently take the u-loop into account 
by letting M(x)  - q(x)L. This leads, under the procedure described above, to L = 2 - E, 

p = 1 + E, Gyy( p )  -p-'+' as compared with the previous set L = 2 - ~ / 3 ,  p = 1 + ~ / 3 ,  

(iii) One should not perhaps put too much weight on these figures, for there are 
many points that have still to be clarified. For example, back to ( 1 5 ) ,  one sees that 
q ( x )  contains a non-integer power of E.  Besides, we have seen that, at the one-loop 
level, the U-loop contributes although from naive power counting the u-coupling is 
irrelevant (but the u-coupling is also 'dangerous' [20]  since it forces in replica symmetry 
breaking). Admittedly this anticipates that a full renormalisation group description 
of the spin-glass condensed phase may still remain at a distance and that much work 
will have to be accomplished to put our understanding at the level of standard field 
theories of critical phenomena. 

GE( p )  -p -4+2E/3e  
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Nevertheless we believe that we have uncovered a way in which one can make 
sense at d < 6 (and hopefully at the physical dimension) of the field-theoretical 
description of the spin-glass condensed phase, justifying the obstinate ground work 
put into understanding the 'bare' spin-glass properties in the last few years. 

One of us (CD) wishes to thank J Zinn-Justin for discussions. He is also grateful to 
H Herrmann, M MCzard and N Sourlas for letting him know of their results prior to 
publication. 
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